Cleanliness is next to Godliness “Cleanliness is next to Godliness,” we have been saying this for a long time but have we practiced it in real life? I guess the honest answer would be no. We all know the importance of keeping our environment clean and healthy, but we always fail to act. Here, Vrikshit Foundation has brought a fantastic opportunity for us to serve back to society. It has organized a drive where they need our valuable time to clean our beloved Pink city Jaipur. Vrikshit Foundation is a Delhi-based organization conducting cleanliness drives, environment protection, and awareness programs. It was started in 2019 and has already spread across 14 states, and recently they have started their activities in Jaipur. Their motive is to create a surrounding where people would love being around. They have successfully cleaned Yamuna bank and also planted 10k trees around the nation and are continuing with their excellent work. ...
Important formula of maths
(α+в+¢)²= α²+в²+¢²+2(αв+в¢+¢α)
1. (α+в)²= α²+2αв+в²
2. (α+в)²= (α-в)²+4αв b
3. (α-в)²= α²-2αв+в²
4. (α-в)²= f(α+в)²-4αв
5. α² + в²= (α+в)² - 2αв.
6. α² + в²= (α-в)² + 2αв.
7. α²-в² =(α + в)(α - в)
8. 2(α² + в²) = (α+ в)² + (α - в)²
9. 4αв = (α + в)² -(α-в)²
10. αв ={(α+в)/2}²-{(α-в)/2}²
11. (α + в + ¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)
12. (α + в)³ = α³ + 3α²в + 3αв² + в³
13. (α + в)³ = α³ + в³ + 3αв(α + в)
14. (α-в)³=α³-3α²в+3αв²-в³
15. α³ + в³ = (α + в) (α² -αв + в²)
16. α³ + в³ = (α+ в)³ -3αв(α+ в)
17. α³ -в³ = (α -в) (α² + αв + в²)
18. α³ -в³ = (α-в)³ + 3αв(α-в)
ѕιη0° =0
ѕιη30° = 1/2
ѕιη45° = 1/√2
ѕιη60° = √3/2
ѕιη90° = 1
¢σѕ ιѕ σρρσѕιтє σƒ ѕιη
тαη0° = 0
тαη30° = 1/√3
тαη45° = 1
тαη60° = √3
тαη90° = ∞
¢σт ιѕ σρρσѕιтє σƒ тαη
ѕє¢0° = 1
ѕє¢30° = 2/√3
ѕє¢45° = √2
ѕє¢60° = 2
ѕє¢90° = ∞
¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
» α = в ¢σѕ¢ + ¢ ¢σѕв
» в = α ¢σѕ¢ + ¢ ¢σѕα
» ¢ = α ¢σѕв + в ¢σѕα
» ¢σѕα = (в² + ¢²− α²) / 2в¢
» ¢σѕв = (¢² + α²− в²) / 2¢α
» ¢σѕ¢ = (α² + в²− ¢²) / 2¢α
» Δ = αв¢/4я
» ѕιηΘ = 0 тнєη,Θ = ηΠ
» ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
» ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
» ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
1. ѕιη2α = 2ѕιηα¢σѕα
2. ¢σѕ2α = ¢σѕ²α − ѕιη²α
3. ¢σѕ2α = 2¢σѕ²α − 1
4. ¢σѕ2α = 1 − ѕιη²α
5. 2ѕιη²α = 1 − ¢σѕ2α
6. 1 + ѕιη2α = (ѕιηα + ¢σѕα)²
7. 1 − ѕιη2α = (ѕιηα − ¢σѕα)²
8. тαη2α = 2тαηα / (1 − тαη²α)
9. ѕιη2α = 2тαηα / (1 + тαη²α)
10. ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)
11. 4ѕιη³α = 3ѕιηα − ѕιη3α
12. 4¢σѕ³α = 3¢σѕα + ¢σѕ3α
» ѕιη²Θ+¢σѕ²Θ=1
» ѕє¢²Θ-тαη²Θ=1
» ¢σѕє¢²Θ-¢σт²Θ=1
» ѕιηΘ=1/¢σѕє¢Θ
» ¢σѕє¢Θ=1/ѕιηΘ
» ¢σѕΘ=1/ѕє¢Θ
» ѕє¢Θ=1/¢σѕΘ
» тαηΘ=1/¢σтΘ
» ¢σтΘ=1/тαηΘ
» тαηΘ=ѕιηΘ/¢σѕΘ
(α+в+¢)²= α²+в²+¢²+2(αв+в¢+¢α)
1. (α+в)²= α²+2αв+в²
2. (α+в)²= (α-в)²+4αв b
3. (α-в)²= α²-2αв+в²
4. (α-в)²= f(α+в)²-4αв
5. α² + в²= (α+в)² - 2αв.
6. α² + в²= (α-в)² + 2αв.
7. α²-в² =(α + в)(α - в)
8. 2(α² + в²) = (α+ в)² + (α - в)²
9. 4αв = (α + в)² -(α-в)²
10. αв ={(α+в)/2}²-{(α-в)/2}²
11. (α + в + ¢)² = α² + в² + ¢² + 2(αв + в¢ + ¢α)
12. (α + в)³ = α³ + 3α²в + 3αв² + в³
13. (α + в)³ = α³ + в³ + 3αв(α + в)
14. (α-в)³=α³-3α²в+3αв²-в³
15. α³ + в³ = (α + в) (α² -αв + в²)
16. α³ + в³ = (α+ в)³ -3αв(α+ в)
17. α³ -в³ = (α -в) (α² + αв + в²)
18. α³ -в³ = (α-в)³ + 3αв(α-в)
ѕιη0° =0
ѕιη30° = 1/2
ѕιη45° = 1/√2
ѕιη60° = √3/2
ѕιη90° = 1
¢σѕ ιѕ σρρσѕιтє σƒ ѕιη
тαη0° = 0
тαη30° = 1/√3
тαη45° = 1
тαη60° = √3
тαη90° = ∞
¢σт ιѕ σρρσѕιтє σƒ тαη
ѕє¢0° = 1
ѕє¢30° = 2/√3
ѕє¢45° = √2
ѕє¢60° = 2
ѕє¢90° = ∞
¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢
2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)
2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)
2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)
2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)
ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв - ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.
» ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.
» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.
» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.
» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)
» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)
» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)
» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)
α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я
» α = в ¢σѕ¢ + ¢ ¢σѕв
» в = α ¢σѕ¢ + ¢ ¢σѕα
» ¢ = α ¢σѕв + в ¢σѕα
» ¢σѕα = (в² + ¢²− α²) / 2в¢
» ¢σѕв = (¢² + α²− в²) / 2¢α
» ¢σѕ¢ = (α² + в²− ¢²) / 2¢α
» Δ = αв¢/4я
» ѕιηΘ = 0 тнєη,Θ = ηΠ
» ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2
» ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2
» ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα
1. ѕιη2α = 2ѕιηα¢σѕα
2. ¢σѕ2α = ¢σѕ²α − ѕιη²α
3. ¢σѕ2α = 2¢σѕ²α − 1
4. ¢σѕ2α = 1 − ѕιη²α
5. 2ѕιη²α = 1 − ¢σѕ2α
6. 1 + ѕιη2α = (ѕιηα + ¢σѕα)²
7. 1 − ѕιη2α = (ѕιηα − ¢σѕα)²
8. тαη2α = 2тαηα / (1 − тαη²α)
9. ѕιη2α = 2тαηα / (1 + тαη²α)
10. ¢σѕ2α = (1 − тαη²α) / (1 + тαη²α)
11. 4ѕιη³α = 3ѕιηα − ѕιη3α
12. 4¢σѕ³α = 3¢σѕα + ¢σѕ3α
» ѕιη²Θ+¢σѕ²Θ=1
» ѕє¢²Θ-тαη²Θ=1
» ¢σѕє¢²Θ-¢σт²Θ=1
» ѕιηΘ=1/¢σѕє¢Θ
» ¢σѕє¢Θ=1/ѕιηΘ
» ¢σѕΘ=1/ѕє¢Θ
» ѕє¢Θ=1/¢σѕΘ
» тαηΘ=1/¢σтΘ
» ¢σтΘ=1/тαηΘ
» тαηΘ=ѕιηΘ/¢σѕΘ
Provided BY- shubhamstudyweb.blogsot.com
Comments
Post a Comment